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S U M M A R Y  
The propagation velocities and the variation of the amplitudes of thermo-acoustical waves in thermo-plastic materials 
are theoretically investigated. The constitutive equations of anisotropic thermo-plastic materials are derived from the 
concept of imaginary decomposition of the deformation rate tensor into the elastic and plastic contributions and from 
that of the plastic potential. From generalized Vernotte's heat conduction law the propagation condition of the jumps 
of the velocity gradients and of the temperature rate is obtained. In isotropic materials and in the case of a normal 
stress vector on the wave front we have two purely mechanical transverse waves and two thermo-longitudinal coupled 
waves. Formulae for the velocities and amplitudes are quite similar with those for thermo-elastic materials. The variation 
of the amplitude is discussed. There are, in general, three effects on the variation, that is, the non-planar, heat conduction 
and plastic flow effects. The transverse waves are subjected only to the non-planar effect, while the thermo-longitudinal 
waves may grow or decay according to the above three effects. 

1. Introduction 

The plasticity theory has been one of the most important fields of continuum mechanics and 
until now there has been proposed a myriad variety of that theory. Recently the author 
presented two kinds of plasticity; one [1] was derived from the hypo-elasticity [2] and the 
other [3] was due to the concept that there is imaginary decomposition of the deformation rate 
tensor into the elastic and plastic contributions and the plastic part of it is proportional to the 
gradient of a plastic yield function. The thermal influence was also taken into consideration 
to the plasticity [4, 5]. 

The waves propagating in a material depend on not only their mechanical properties but 
also on their thermal properties. Therefore a wave, in general, must be a thermo-mechanical 
coupled wave. 

In order to cancel the infinite propagation velocity of the thermal disturbance, which is the 
natural result of the Fourier's law, Vernotte [6] proposed a modified heat conduction law: 

1 
= - - 3 ,  (1.1) qi "C ' 

where qi and T denote, respectively, the heat flux and the temperature, and z and ~: are, 
respectively, the relaxation time and the conductivity constant. In this paper a comma followed 
by a suffix denotes the partial derivative with respect to a coordinate. 

Applying (1.1) to the analysis of thermo-mechanical coupled wave propagation, Popov [7], 
Achenbach [8] and Chen [9] discussed one-dimensional wave propagation in thermo-elastic 
materials. Also Tokuoka [10, 11] investigated the propagation and growth and decay of 
three-dimensional waves of arbitrary form in anisotropic and isotropic thermo-elastic materials. 

On the other hand pure mechanical waves in generalized Prandtl-Reuss plastic materials 
were analyzed by Tokuoka [12-14] and recently he applied Vernotte's law (1.1) to thermo- 
plastic materials introduced in [5], then he investigated the propagation and growth and decay 
of plane coupled waves in those materials [15, 16]. 

In this paper three-dimensional thermo-acoustical waves of arbitrary form in thermo-plastic 
materials are discussed theoretically. In section 2 the constitutive equations of anisotropic 
thermo-plastic materials are defined and their isotropic forms are obtained. In section 3 brief 
summaries of the theory of surface and of the compatibility conditions of the first and second 
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10 Z Tokuoka 

orders are depicted. In section 4 the classification of the waves and the propagation velocities 
are given and in section 5 the variation of the amplitude is analysed. In the last section six 
important points of the obtained results are discussed shortly. 

2. Thermo-plastic materials 

The constitutive equations of the linear thermo-elastic material were derived in [-10] as 

1 
alj = Po (CijkleU + CliO), rl : - Too (CifilJ+ CO),  (2.1a, b) 

where aij, r I, p, e,j and T denote, respectively, the stress, the specific entropy, the density, the 
strain and the temperature, and 

0 - ( T - T o ) / T o  (2.2) 

is the dimensionless temperature, and where C,ju, Cij and C are the material constants and 
express mechanical, thermo-mechanical coupling and thermal properties of the materials, 
respectively. Here and henceforth the suffix zero indicates a quantity in the equilibrium state, 
and the summation convention with repeated suffixes is applied. 

2.1. Anisotropic thermo-plastic materials 

Differentiating (2,1) with respect to time and neglecting small quantities of second-order in the 
deformation gradient, we have 

+ C 0), (2.3a, b) 

where 
dij = �89 (vi,j + vj, i) (2.4) 

denotes the deformation rate tensor and vi is the velocity of a material particle. 
Now we assume that in a plastic flow state the velocity of a material particle is imaginarily 

decomposed into elastic and plastic contributions, that is, 

dis = Bdij + pdi~ , (2.5) 

where the suffixes E and P indicate, respectively, the elastic and plastic parts of a quantity. 
Furthermore we assume that the relations (2.3) hold for materials in plastic flow state when 
dq is replaced by Edij. So we have 

1 d ~ij = PO (CijklEdkl-t- CliO), t] = -- Too (CijE ij+ CO) (2.6a, b) 

for thermo-plastic materials. 
Here we suppose that plastic flow may occur when the stress state satisfies the yield condition : 

y(aij  ) = 0. (2.7) 

In general the yield function y depends upon a thermodynamic variable, e.g., the temperature. 
'However we assume here that this dependence is so small that it may be neglected and (2.7) 
holds for the thermo-plastic material. 

Von Mises [ 17] proposed a plastic f low rule such that the plastic part of the deformation rate 
tensor is proportional to the derivative of the plastic potential  y(aij) with respect to the stress 
tensor. Then 

ad o = 49 @/&ri j  =_ 49 y~j, (2.8) 

where 49 is a scalar proportionality coefficient. 
Substituting (2.6a) and 
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Thermo-acoust ical  waves in thermo-plastic materials 

Edl j  = d i j -  ~g y i j  

into the perfect  plastici ty condition: 

Y i j ~ i j  -~- O ,  

we have 

(o = Fijdij + F O , 
where 

Fi j m Yao Cabij F ==- Yab Cab 

Ycd C c d e f  Yef ' Yea Ccae f  Y e f  

11 

(2.9) 

(2.10) 

(2.11) 

(2.12a, b) 

From (2.6), (2.9) and (2.11) we have the constitutive equations of the anisotropic thermo- 
plastic materials. 

d i j  = Pi jk ldk l - I -  P i jO  , i; I = P'ijdij + PO , (2.13a, b) 

where the plasticity tensors and scalar are given by 

Piju ==- Po ( C i j k , -  Cij,bYabFk,) , (2.14a) 

Pij - Po (Cij--  CijabyabF), (2.14b) 

1 1 
P'ij =- To (Ci3--CabYabFiJ) -- Po To Pii , (2.14c) 

1 
P = T o ( C - - C , b y , b F ) .  (2.14d) 

Now we assume that the anisotropic heat conduction law [10] : 

(h = - vij (qj + Kjk 0 ,k) (2.15) 

holds for our thermo-plastic materials, where vq and Kij-~ ~cij T O denote, respectively, the inverse 
relaxation time tensor and the conductivity tensor. 

For the thermo-elastic materials [10] the law of energy conservation is expressed by 

po To O = - q,., , (2.16) 

which means that the variation of heat in a portion of the material is due to the heat flow 
through its boundary surface. Here we assume that (2.16) holds for our thermo-plastic materials*. 
Then from (Z13b) and (2.16) we have 

qi, i = - Po To (P;jdij + PO) . (2.17) 

* We assume that the rate of the specific Helmholtz" free energy is expressed as 

1~ = I-Iijdlj-[-HO, (F1) 

and Hij and H may depend upon some state variables but  they are independent  of the temperature gradient. Then the 
C laus ius -Duhem inequality : 

1 
p(C)+~)-~,~d,j + ~ q,T,<= 0 (F2) 

is satisfied for all admissible processes, if 

a ~ =  p H i j ,  r l= - - H / T  o , qiO,~< O, (F3) 

From the law of balance of energy, which is expressed as 

p (~ + r 1 T)" = aij dij - qi,~ + P s ,  (F4) 

we can easily obtain 

p T ~I = --qi, i + PS (F5) 

where s denotes the specific heat supply and is assumed to be zero in our thermo-plastic materials. 
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12 Z Tokuoka  

2.2. isotropic thermo-plastic materials 

In an isotropic material material tensors must be isotropic tensors. Hence from the familiar 
theorems of tensor analysis we have 

C~ju= --2 ~j,Sk ~ + --# (~ik6jZ+~,6jk) ,  (2.18a) 
Po Po 

C~j - 34+2/z e Toc~ ) _ _A(~i j  ' (2.18b) 
Po 

C = - c v T  2 ,  (2.18c) 

where 4 and # are the Lam6 elastic constants, c~ is the coefficient of thermal expansion, Cv is 
the specific heat at constant volume, and 6q denotes the Kronecker delta. Refer, e.g., to Thomas 
[18, Chap. 1]. 

Now we assume the so-called yon Mises  yield condition: 

* * 2k 2 (2.19) ff ij Gij ~ 

where 

' (2.20) tT~ --~ Gi j-- ]Gkk(~i j  

is the deviatoric stress tensor and k is a material constant. This yield condition is a natural 
consequence derived from the assumptions that y(Gu) is a quadratic form of the stress compo- 
nents and its coefficients are isotropic tensors and that y(au) is pressure-insensitive. See 
von Mises [-17]. 

Substituting (2.18) and (2.19) into (2.12) and (2.14), we have the isotropic plasticity tensors 
and sca la r  

/~ * * (2.21a) 

Pu = - (34 + 2p)e T O 6 u , (2.21b) 

, 3 4 + 2 #  ~6~j - PiJ (2.21c) 
Pij - Po Po To ' 

P = cvTo . (2.21d) 

Thus we have the constitutive equations of an isotropic thermo-plastic material: 

# tTkl dkl Crij - -  (34 + 2/0 c~ T6~j (2.22a) d i j =  4dkk f i j+  2 # d l j - -  ~ * �9 �9 , 

_ 34+2/~ a d k k + C v ~  ' (2.22b) 
Po 

Also we have from (2.17) 

q~,~ = - (34 + 2p) cz T O dkk-- Po Cv To T .  (2.23) 

3. Surfaces of arbitrary form and compatibility conditions of the first and second order 

We consider a two-dimensional regular surface S in a Euclidian three-dimensional space. It is 
represented by the form: 

= t ) ,  (3 . l )  

where xz (i = 1, 2, 3) are the Cartesian coordinates of a point on S,  s (K = 1, 2) are the cur@ 
linear coordinates of the point on S and t denotes the time. 
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Thermo-acoustical waves in thermo-plastic materials 13 

Basic formulae are summarized here from the theory of surface. Refer, e.g., to Thomas 
[18, Chap. 4]. 

rtin i = 1 , nixi, K = 0, (3.2) 

Xi,KL-= bKLrti, ni.K = --gLMbKLXi, M (3.3) 

g xL brL = 2g2, (3.4) 

where n~, xi.K, gKL, bK L and f2 denote, respectively, the normal vector, a tangent vector, the 
contravariant fundamental metric tensor, the second fundamental form and the mean curvature 
of Z. 

According to Thomas we may introduce an important concept, that is, the 6 time derivative. 
From his analysis [19] we have 

_ gKL U ,KXi,L, (3.5) 
5t 

where U denotes the normal velocity of Z. Formula (3.5) shows that, if U is constant on S at 
an instant, the normal direction of ~ can not rotate at that time. 

If the normal velocity U is homogeneous in the region into which Z propagates, any surface 
of Z at any time is parallel with each other. Thomas [ 18, Chap. 4] proved that the mean curvature 
of the parallel surfaces is given by 

Y2 = f2~ - K~ I 
l _  2f2ol + Kol2 , (3.6) 

where f2 o and Ko denote, respectively, the mean and Gaussian curvatures of a surface from 
which the normal distance I is measured. 

Now we assume that S is a moving surface over which the derivatives of some quantity may 
have jump discontinuities. We define the discontinuity I f ]  in f by writing 

[ f ]  = f -  - f + ,  (3.7) 

where the subscripts - and + refer, respectively, to the back and front sides of the moving 
surface. 

The geometrical and kinematical compatibility conditions of the first and second order are 
given by 

[ f , J  = f n , ,  [ f ]  = - U f ,  (3.8a,b) 

[f , , j]  = fn,n~ + gKV, K (niXj.L + njX,,L) -- f gKL oMN bKM Xi,L X~,N , (3.9a) 

( If,,] \ -  u f  + n , -  ugKLxi,Kf, L (3.9b) 

I f ]  = U2f  - 2U 5 f  (3.9c) 

where 

[ f ]  = 0 (3.10) 

and the constant value of U are assumed and 

f =  [ f , i ]ni ,  f - -  [ f ,  ij]ninj. (3.11) 

See, e.g., Thomas [20, 19] or Truesdell and Toupin [21]. 

4. Propagation velocities of  thermo-acoustical  waves in thermo-plastic  materials  

A moving singular surface associated with the jumps of the velocity gradient and the tempera- 
ture rate is called a thermo-acoustical wave if the following two conditions hold" 
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14 Z Tokuoka 

(i) vi, O, aij, t 1 and qi are continuous everywhere. 
(ii) The derivatives o f  the first and second order o f  vi and 0 have jump discontinuities across the 

singular surface but are continuous everywhere else. 
From the relations (2.13) and (2.15) and above definition we can say that the derivatives of 

the first order of a~j, t /and q~ have jump discontinuities across the singular surface. 
The stress and the velocity must satisfy the equation of motion : 

ai j , j  = pOI)i , (4.1) 

where the body force is assumed to be zero. 

4.1. Waves in anisotropic-materials 

Applying the definitions (i) and (ii) and the compatibility conditions of the first order (3.8) to 
(2.13a), (2.17), (4.1) and (2.15) we have 

- -  V ~i j  : Pi jk l~knl  - U Pi jO , 

qi ni = - po To (Pi~ fh nj - U P 0),  

ff ijnj = - Po U f~ , 

- U~I~ = - v~jKjankO 

(4.2a) 

(4.2b) 

(4.2c) 

(4.2d) 

Eliminating ~7~j and qi from (4.2), then we have the propagation conditions of the thermo- 
acoustical wave, 

( P Q i k -  U 2  (~ ik )~k-  U pQ~O = O, (4.3a) 

- U p Q i f ~ + ( p Q -  U 2 ToP)O = O, (4.3b) 

where 
Pij nj n i Vij K jk nk aQik = PiJkznjnl, PQi ~ , pQ - (4.4) 

Po Po Po 

The propagation conditions (4.3) are combined into a single relation of the form: 

pR~patj = O, (4.5) 
where 

vR~r =_ vQik-- U26il, - UpQi , (4.6) 
- UvQi P Q -  U2 ToP 

a ~ -  (~,, 0), (4.7) 

and the greek suffix runs from one to four. 
The propagation velocities of the thermo-acoustical wave are, then, solutions of the equation : 

det (pR~) = 0 ,  (4.8) 

which yields four roots. So we have, in general, four waves having the same normal direction ni. 

4.2. Waves in isotropic materials 

Substituting (2.21), vii= (1/Z)~ij and Ki~ = ~c To(~ij into (4.4) we have 

 :To 
pO~ = - A n l ,  p Q -  

po z 
where 

CL~ 
\ P o  / Po 

(4.9) 

(4.10) 
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Thermo-acoustical waves in thermo-plastic materials 15 

are, respectively, the longitudinal and transverse wave velocities of the purely mechanical waves 
in a linear elastic material, and 

a* =- a*n s (4.11) 

denotes the deviatoric stress vector acting on the wave front surface. 

4.2.1. Normal stress vector 
If the stress vector (4.11) is normal to the wave front, i.e., 

we have 

where 

pC L ~--- C L (1 c~ a*2~ ~ 
' 

then we have 

(4.12) 

(4.13) 

(4.14) 

IIPR  II = 

c ~ -  U 2 0 0 0 

0 CT 2 --  U 2 0 0 

0 0 p C  2 - -  U 2 A U 

0 0 A U  xTo _ cvTg U: 
Po z 

(4.15) 

where we adopt ni = (0, 0, 1). 
From the yield condition o - ~ 3 q - o ' ~ 2 + o ' * 3 = 2 k  2 and the relation a~+a~+a~=O,  where 

a* and a* are other two principal deviatoric stresses, we can easily obtain 2/x/3 >a*/k  > 1. 
Then we have 

CL >0% >eL \ 3 ~ f f i # ) /  �9 (4.16) 

From (4.5) and (4.15) we can say that two transverse waves are purely mechanical and have 
the same propagation velocity c x as in the case of isotropic linear elastic materials while two other 
coupling waves, called the thermo-longitudinal waves, have velocities, which are roots of 

(pC2- U 2 , ( ; T :  - c v T 2 U 2 )  = A2U 2 (4.17, 

or  (v/ - ( l+ef lZ+e~)  ~ + e f l 2 = O ,  (4.18). 

and the ratio of the amplitudes is given by 

44 pCL ( p ~ - )  2 -  1 

a3 A (e~t)  , (4.19) 

where 

( 
eft =-\eC2po-TcvTo// , e7 - 2 2 (4.20a,b) pCL CV To 

are dimensionless quantities, which depend not only upon the material constants but also upon the 
normal deviatoric stress vector acting on the wave front. 
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16 Z Tokuoka 

Equations (4.17) and (4.18) have the same form as for thermo-longitudinal waves in linear 
thermo-elastic materials [10, Eqs. (5.7), (5.12)], and we may obtain (4.18) and (4.19) when 
eL, fl and 7 in (5.7) and (5.12) of [10] are, respectively, replaced bypCL, pfl andpy. Furthermore 

Figures 1 and 2 of [10] may be used after the same replacements of the three quantities eL, fi 
and ?. 

4.2.2. Non-normal stress vector 
In this case we can not separate the transverse waves from the thermo-longitudinal waves. 
If we adopt the x2-axis such that the (x2, x3)-plane contains the stress vector acting on the wave 
front, we have 

4 -  F: 

0 

I l e R ~ t l  = 

0 

0 

0 0 0 

C 2 -- U 2 ~ !  a~ a*  0 

C2 U2 
k2 a* (7* pC 2 -  A U  

'~To 
0 AU 

Po ~ 
_ _  _ c v T 2 U  2 

(4.21) 

The thermo-acoustical tensor (4.21) shows that there is one purely mechanical transverse 
wave, which has velocity CT and polarization direction along the x~-axis, while the other three 
waves are neither purely mechanical and thermal, nor purely transverse and longitudinal. 
Henceforth we will focus our attention to the case of a normal stress vector. 

5. Variation of amplitudes of thermo-aeoustieal waves of arbitrary form in isotropic thermo- 
plastic materials 

From the definition (3.7) of the jump discontinuity, the product of two quantities f and g 
has the following jump discontinuities: 

[fg] = [ f ]  [g] + [ f ]  g + +f+ [g], (5. la) 

[fg] = - I f ]  [g] + I f ]g_  +f_ [g] .  (5.1b) 

In this section we consider two kinds of waves, that is, proceeding and receding waves. 
When the plastic region proceeds into the elastic region we say that the boundary is a pro- 
ceeding wave, while, if the reverse occurs, we say that the boundary is a receding wave. Also 
we assume here that the stresses in both sides satisfy the yield condition and so the stresses 
have the same values while one side remains in the elastic state such that vld = 0 = 0 but other 
side is in plastic flow. Then, assuming t h a t f a n d  g in (5.1) are the velocity gradient and/or the 
temperature rate and regarding the boundary as a singular surface, we have 

[fg] = • I f ]  [g] ,  (5.2) 

where the plus and minus signs refer, respectively, to the proceeding and receding waves. 
Now we assume that the deviatoric stress vector a* given by (4.11) is normal to the wave 

front and holds a constant value along the path and the waves have constant propagation 
velocities. Hence we have the case mentioned in the subsection 4.2.1. 

Differentiating (4.1) with time, eliminating dij from it and (2.22a), and dividing the result 
by Po, we have 

(C 2 2 , 2 
- -  CT)  Vk,ik "~ CT Vi,kk -- ~i -- AO,i 

2 
CT.  , , * * * * ( 5 . 3 )  k-2 ( crkl ff ij Vk,U -}- (Ykl,j al j  dkl + akl ff ij,j dkt) = 0 
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Thermo-acoustical waves in thermo-plastic materials 17 

and differentiating (1.1) and (2.23) with xi and time, respectively, and eliminating 0~ and qi 
from them, and dividing the result by Po, we have 

A c v r g 
AG,k+cvTgO - KT~ O,kk + -- Vk,k + 0 = 0 (5.4) 

p0T z "c 

Applying the compatibility conditions of the second order (3.9) to (5.3) and (5.4) and using 
(5.2) and 

~---- # (a~nj+aini--2akng61j - ~ a * a k n , )  (5.5) 
a* U 

we have after some lengthy manipulations that 

4 (~a~ _ 20  (c 2 - c 2) (ak nk) n~- 20  c 2 az + 2f2 k~ (a~ ak)a* 

+ 4) d 

C2 gKL * , , , 
k 2 {ak'(akn'),EaijXj, L+Crk'(akX'.L),Kai } 

.o4 __+ ~ 2  {a* (a2 + 1~ (ak nk) 2 _ ak) (ai+�89 

\ 6t n i -  UgKLx i  =- 

C 2 
- (c~ - c 2 ) ( ~  nk) n, + (U  2 - c 2) b, + ~ (a* ~k) a* -- A UOn, ,  (5.6) 

~ak {(2QU + -- U(akXk,L),K } A ~ _  nk + A ! )  (aknk) gKL 

(~a4 (2tcTo(2 
- -2cvT 2 U ~ - +  \ PoT 

=AUGnk)+ cvT U O. 
\Po r 

C vz T2 U) a 4 

5.1. Transverse waves 

(5.7) 

For a transverse wave polarized along a tangent direction defined by a unit vector t i we have 
the amplitude aT= ak tk and 

nit ~ = O, aknk = a4=0,  U =c  T . (5.8) 
Multiplying (5.6) by t~ and referring to (5.8) and (4.12) we can easily obtain 

daT 
dl - OaT' (5.9) 

where I denotes the normal path length and 6/6t = Ud/dl is used. 
From (5.9) and (3.6) we have the global variation formula: 

aT(l) = aT(0) 
(1 -- 2f2 o 1 + Ko  12) ~ (5.10) 

The above formula is identical with t-hat of the thermo-elastic materials. 
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18 T. Tokuoka 

5.2. Thermo-longitudinal waves 

For a thermo-longitudinal wave we have the amplitudes a3 = ak nk and a4, which are connected 
by (4.19). The propagation velocity U satisfies (4.17) and we have 

= * - * =0 .  (5.11) nkXk, K = akXk, K O'kl nkXl, K -- ~klakXl,K 

Multiplying (5.6) by n i and referring to (5.11) we have 

- 2(2r, caa3 -  A (~a4 2p~ (~ ~r*2~ (}a 3 
2U 77- 67- + ~ ~ ] a* a~ 

= (U e pcZ)(~knk)--AUO. (5.12) 

Also multiplying (5.12) and (5.7) by A U and (e c2 - U2), respectively, and referring to (5.11) and 
(4.17) we have 

A(pc2 -U  2) - { A z u + 2 c v T 2 U ( g c ~ - U 2 ) } - ~  - 2~?AU3a3 --T(pcL2--U2) a3 

+(ec2_U2)(2xTo Q Cv 2 a4 + k--- W -  - t~*a2=0 (5.13) 
\ PO z -- k2// " 

Then, expressing a4 by a3 from (4.19), using (4.17), (4.20) and 6/&= Ud/dl, and dividing the 
both sides of (5.13) by 

(2ev Up4/A){pT+ 1)2}, 
we can obtain the differential equation: 

d a 3 @  2 pV) dl = - Uzz a3T-II3 a2, (5.14) 

where 

pfl2 (p~L22 -- 0 2 
PV= 2 ~U2,~( [U 2 .~2, (5.15) 

~-~ ey+ ~ - -  

is a dimensionless quantity and 

~ - /  2} (5.16) 

has the dimension of the inverse of velocity. On the other hand if we express a3 by a 4 from 
(4.19) we have 

da'* - ( f2 ~eV ) a4.T-17,, a] , (5.17) 

1~'2 

where H4--~ToeY (p@L) 4" //32+2/*~ (-~-) (~ ~ - /  2} (5.18) 
~ ' ~ ] (  U 2 -  1 ) { e 7 +  ( p ~ - -  1) 

is a dimensionless quantity. 
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Thermo-acoustical waves in thermo-plastic materials 19 

The quantity ev, called the damping factor, has the same form as that in the case of thermo- 
longitudinal waves in thermo-elastic materials and we may obtain ev by the replacement of 
cL and/3 in [11, Eq. (4.9)] by eCL and eft, respectively. Figure 3 of [10] is then useful for this 
case by the above replacement. 

The differential equations (5.14) and (5.17) can be integrated easily and we have the global 
variation formulae : 

ar(0 ) exp ( -  
pV 

aF(1) = (1-2~01+KoI2) ~ 1 +nrar(O)I(l) ( r=3,  4), (5.19) 

where a3(0) and a4(0) are, respectively, the initial amplitudes of aa and a4 at l=0,  and 

fl exp ~ s 
I(I) - o ( l _ 2 0 o s + K o s a ) }  ds. (5.20) 

6. Discussions 

6.1. Classification of physical properties of waves 

From the definition (3.7) of the jump we can say that, if [/5] > 0, [ti] = 0 and [fi] < 0 over the 
wave front, the waves are, respectively, compressive, equivoluminal and expansive waves. The 
law of conservation of mass shows [fi] = --paknk, then we can say that the transverse wave is 
equivoluminal while the thermo-longitudinal wave is an expansive wave if a a > 0 and a compressive 
wave if a 3 < O. 

The inequalities [0] > 0  and [0] < 0 denote, respectively, heating and cooling waves. Then 
from [0] = -  Ua4 and U > 0  we can say that, the wave is cooling if a4 >0, while the wave is 
heating/fa 4 < 0. On the other hand [0] > 0  and [0] < 0 denote, respectively, entropy increasing 
and decreasing waves. 

Figures 1 and 2 of [10], which hold for our case when CL, /3 and 7 are replaced, respectively, 
by pC L, p/3 and PT, show that there are two kinds of waves, i.e., the almost mechanical faster wave 
for U > pC L and the almost temperature rate slower wave for U < pCL.* 

From (2.22b), (4.18) and (4.19) we can easily obtain that 

( ( U~2 z - 1~ 
~fl~ Cv To pfl~ ~C~L Cv To \ ~ci~ / 

~-U h i ITS]. (6.1) 

Then we have formally four kinds of thermo-longitudinal waves: 
(i) The entropy increasing, heating, compressive, faster and almost mechanical wave, 
(ii) The entropy increasing, heating, expansive, slower and almost temperature rate wave, 
(iii) The entropy decreasing, cooling, expansive, faster and almost mechanical wave, 
(iv) The entropy decreasing, cooling, compressive, slower and almost temperature rate wave. 

6.2. Effects on variation of amplitude 

There are three kinds of effects on the variation of amplitudes of the waves, that is, (i) The non- 
planar effect, (ii) The heat conduction effect, and (iii) The plastic flow effects. 

* We now  exclude the special case 07 = 0. In this case a w a v e  hav ing  U = pC L exists. 
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6.2.1. The non-planar effect 

The factor s in (5.9), (5.14) and (5.17), and the factor (1 - 2f2oi+ Ko 12) ~ in (5.10), (5.19) and (5.20) 
show the non-planar effect. From (5.10) we can say that the variation of the amplitude of a 
transverse wave is subjected only to the non-planar effect. If we have a positive real root l~ of 

1 - 2s l~ + K o 12 = 0 ,  (6.2) 

the wave front has a focal point or a focal line at l=  I~.* 

6.2.2. The heat conduction effect 

The positive dimensionless quantity eft of (4.20a) depends upon the heat conduction, which is 
represented by a non-zero value of x. Then the damping factor ev of (5.15) depends upon the 
heat conduction. Formulae (5.19) show that the heat conduction damps the amplitudes of the 
waves exponentially with respect to the path length. 

-,6.,2.3. The plastic flow effect 

If the material concerned is not a plastic material but an elastic material, the yield strength k 
must tend to infinity. Then the quantities Hr  (F = 3, 4) of (5.16) and (5.18) reduce to zero, and 
we have the differential equations: 

dar ( e-U--v) d l -  f 2 -  a r (F=3,4)  (6.3) 

These are, of course, identical with (4.8) of [11]. Hence we can say that the quant i t ies / / r  indi- 
cate the plastic flow effect. 

6.3. General criteria of growth and decay of wave 

The integral I(1) of (5.20) is a monotonically increasing function o f / a n d  I(0)=0.  Then the 
formulae (5.19) show that (a) if +Hrsr(O ) are non-negative, the amplitudes ar(l) decrease 
monotonically, while (b) if + / / r  ar are negative and if thepa th  length l~, which is a smaller 
solution of 

1 
I(l~) = -T- Hrar(O)' (6.4) 

exist, the ar  (l) may blast out at l=  l~, and (e) if ___ FI rar < 0 and if there is no solution of (6.4), 
ar(l) cannot blast out. 

At l=  l~ we have an infinite magnitude of the amplitudes at. Then the definition (i) of the 
thermo-acoustical wave depicted in section 4 can not be applied at the point and we may have 
discontinuities of vi and 0 there. So we can say that the thermo-acoustical waves may coalesce 
into thermo-mechanical shocks when the amplitudes blast out. 

From (4.19) the amplitude ratio is independent of the path length, then if a3 or a 4 blasts out 
at a point, the other must do at the same point, and if one of them does not blast out, the other 
does not also. Thus the above discussion shows that a 3 and a4 must have the same sign. Certain- 
ly from (4.19), (5.16) and (5.18) we have 

/ / 3  a3  = / / 4 a 4  �9 (6.5) 

Then we can say from (6.4) and 6.5) that the amplitudes of the mechanical and thermal compo- 
nents of the thermo-longitudinal wave, i f  they blast out, tend to infinity at the same time. 
Therefore among the four kinds of waves formally given in subsection 6.1., we have two ad- 

* If two positive real roots of (6.2) exist, 1 s must  be taken to be the smaller root. 
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missible waves (i) and (iii). The upper and lower signs of the double signs in (5.19) refer, re- 
spectively, to proceeding and receding waves. Hence we can say that the proceeding compressive 
heating and the receding expansive cooling thermo-acoustical waves may blast out and coalesce 
into shock waves/f  (6.4) has a positive solution. These two waves may be classified into a same 
type of wave, that is, the boundary wave where the material in the plastic flow side is more 
compressive and heating than that in the elastic side. 

6.4. Plane waves 

In this case Oo = Ko = 0, (5.20) can be integrated and we have 

( Pvt) ar(O) exp - ~ 
at(l) = (F = 3, 4), (6.6) 

a r ( 0 ) ( l _ e x p  (_  e v I+-G- 
where 

pv (F = 3, 4) (6.7) 
A r ~ Urfl  r 

are called the critical amplitudes. The formula (6.6) is identical with the one-dimensional 
acceleration wave in materials with memory analyzed by Coleman and Gurtin [22]. 

Then we can say that 
I f  either 
(a) the absolute magnitudes of the initial amplitudes are less than the critical amplitude, or 
(b) the proceeding expansive heating wave, or receding compressive cooling wave is concerned, 

then the amplitudes decay down monotonically as the path length tends to infinity. 
I f  the initial amplitudes are equal to the critical amplitudes, then the amplitudes remain constant 

values. 
On the other hand, if both 
(c) the absolute magnitudes of the initial amplitudes are larger than the critical amplitudes, and 
(d) the proceedin 9 compressive heating wave, or the receding expansive cooling wave is con- 

cerned, 
then the amplitudes blast out monotonically in the finite path length given by 

loo- Uze v l o g ( l _ +  A a ~  ) .  (6.8) 

6.5. The case of no plastic flow effect 

If F / r=0 ,  the differential equations (5.14) and (5.17), and the formulae (5.19) reduce to those 
for thermo-elastic materials, which were analyzed in the former article [11]. 

From (5.16) and (5.18) we h a v e / / r  = 0, if o'*= 0 or _+ 2k/x~3. It is easily obtained that these 
stress states are the following cases: 

a* = - r  = +_k, r =0, (6.9) 

and 

k a * =  2 
a* = a* = T- ~ ,  ~ k, (6.10) 

where cr• and a* are two principal deviatoric stresses whose principal axes are tangent to the 
wave front. 
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6.6. Non-conductor and a material with no thermo-mechanical couplin9 

A material, in which heat can not flow, is called a non-conductor. The non-conductor has a van- 
ishing value of the conductivity Ki~ = ~: = 0, thus eQ = 0 from (4.4)3. Then from (4.5), (4.6) and 
(4.8) a thermally discontinuous static surface may exist, where we have a 4 @ 0 and al = U= 0. 

A material with no thermo-mechanical coupling has the constitutive equations 

6 i j  = Pijktdkt, O=PO, (6.11a,b) 
i.e., they are separated into purely mechanical and purely thermal equations. Taking P~j = ~ = 0 
in (4.4) we have PQi-- 0. Then the thermo-acoustical tensor pR~a is separated into two parts and 
the propagation condition (4.8) reduces to 

de t (vQik - -U26ik )=O,  U 2 =  PQ (6.12a,b) 
ToP 

Equations (6.12a) and (6.12b) give, respectively, the propagation velocities of the purely 
mechanical acoustical waves and of the pure temperature rate wave. 
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